
 
 

FY2002 UNIVERSITY SOFTWARE INITIATIVE PROPOSAL 

FOR THE 

NASA SOFTWARE IV&V FACILITY 

Initiative Title: Sensitivity of Software Reliability to Operational Profile 
Errors: Architecture-Based Approach  

Initiative ID: Project 10000559, Task 24g, Award 1000625GR 

September 2002 deliverable: 

Report on 

Application of the methodology for uncertainty analysis on the case studies  

PI:   Katerina Goseva – Popstojanova 

Student:  Sunil Kumar Kamavaram  

LANE Department of Computer Science and Electrical Engineering 
West Virginia University 

 
 

 



Methodology application and validation on case studies, September 2002    Page 2 

Report Summary 
 
In this report we first present a methodology for uncertainty analysis of software reliability that can be 
used throughout the software life cycle. Then, we describe in details several methods for uncertainty 
analysis that can be used within this methodology: entropy, method of moments, and Monte Carlo 
simulation. The methodology and all methods for uncertainty analysis are applied and validated on a 
case study based on the software developed for the European Space Agency. Also, we apply our 
methodology on the NASA’s Hub Control System (HCS) from the International Space Station (ISS) 
based on the available software artifacts for this case study.  
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1. Introduction 
 

A number of analytical models have been proposed to address the problem of quantifying software 
reliability. One group of models is focused on modeling reliability growth during testing phase 
[Farr96]. These so called black - box models treat the software as monolithic whole, considering only 
its interactions with external environment, without an attempt to model the internal structure. Black -
box models are clearly inappropriate for large component - based systems. For these systems, we need 
to use a white - box approach that takes into account the information about the architecture of software 
made out of components. An extensive survey on architecture -- based software reliability models, 
including their assumptions, usefulness, and limitations is presented in [Goseva01a].  

Two important questions arise with respect to predications of software reliability based on models. 
The first question addresses the appropriateness of the model. Thus, the model could be inappropriate 
because its assumptions may not hold in practice. The second question addresses the accuracy of 
parameters values. Parameters can be estimated using the field data obtained during testing or 
operational usage of the software, historical data for products with similar functionality, or reasonable 
guesses based on the specification and design documentation. In practice, there is a lot of uncertainty 
around parameters because they rarely can be estimated accurately. The traditional way of estimating 
software reliability by plugging point estimates of the unknown parameters into the model [Farr96], 
[Goseva01a] is not appropriate since it discards any variance due to uncertainty of the parameters. In 
order to answer the question how parameters uncertainties propagate into reliability estimation, 
uncertainty analysis is necessary. 

In this report we first present the methodology for uncertainty analysis of software reliability. Then, 
we apply and validate our methodology on the case studies from European Space Agency and NASA. 
The rest of the report is organized as follows. The discussion of the related work is presented in 
Section 2. The basic concepts of the proposed methodology for uncertainty analysis are presented in 
Section 3.  The description of the case studies is given in Section 4. The entropy, method of moments, 
and Monte Carlo simulation as methods for uncertainty analysis are described and applied on the case 
studies in Sections 5, 6, and 7 respectively. Finally, the concluding remarks are presented in Section 8. 
 
2. Related work and uniqueness of the research  
 

Traditionally, the most common method for uncertainty analysis in software reliability is 
conducting sensitivity studies. Thus, sensitivity of the software reliability estimation to errors in the 
operational profile has been investigated in the context of black - box reliability growth models 
[Chen94], [Musa94], [Pasquini96]. Sensitivity studies of software reliability estimates obtained using 
architecture - based models have been presented in [Cheung80], [Siegrist88]. In these studies the 
authors assumed fixed known values for the transition probabilities and derived the sensitivity of the 
system reliability with respect to the reliability of each component. However, any inaccuracy in the 
operational profile directly will affect transition probabilities among components. Therefore, in 
[Goseva01b] we presented the sensitivity studies of software reliability with respect to the operational 
profile (i.e., transition probabilities) and component reliabilities. 

In addition to sensitivity studies, there have been several attempts to quantify the variability of 
software reliability. In [Miller92] authors used black - box approach and assumed that the failure 
probability has prior Beta distribution. Using Bayesian approach they derived the mean and the 
variance of the failure probability for a software system that, in its current version, has not failed.  The 
same problem was considered in [Adams96] for the software with partitioned input domain. However, 
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in this work it was recognized that there is uncertainty in the estimations of the reliability for each 
partition (using Beta prior distribution), as well as uncertainty in the probability of using each partition 
(using Dirichlet distribution). In [Singh01] the mean and the variance of software failure probability 
were estimated using Bayesian approach and assuming Beta prior distributions for component failure 
probabilities. In another related work [Leung97] three optimization models for software reliability 
allocation under an uncertain operational profile were formulated and solved. In this case the 
operational profile was characterized with the probabilities of function execution. 

Several papers that use discrete time Markov chains to describe software usage are also relevant to 
our work, although they do not consider software reliability. Thus, in [Whittaker93] Markov analysis 
of software specifications was presented and entropy was used as a measure of uncertainty. In 
[Wesslen00] the impact of uncertainties in the operational profile on the usage coverage was analyzed. 
Uncertainties were specified as intervals of transition probabilities assuming a uniform distribution in 
the interval. 

From the above it is obvious that uncertainty analysis was not used systematically and extensively 
in software reliability. However, it has a long tradition in other engineering applications. Thus, several 
methods for uncertainty analysis of system characteristics from uncertainties in component 
characteristics are presented in [Hahn94], [Jackson81], [Yin01]. 

In this report we propose a methodology for uncertainty analysis of architecture - based software 
reliability models suitable for large complex component - based applications and applicable throughout 
the software life cycle. The methodology addresses the parameter uncertainty problem and enables us 
to study how the uncertainty of parameters propagates in the system reliability. Within this 
methodology we are considering several different methods for uncertainty analysis. So far we have 
used entropy [Kamavaram02], methods of moments [Goseva02b], and Monte Carlo simulation 
[Goseva02c] for uncertainty analysis.   

The general goal of our work is to point out the need for conducting uncertainty analysis in 
software reliability and to illustrate its usefulness. Thus, the proposed methodology provides a 
systematic way for uncertainty analysis that can be used for keeping track of the software evolution 
throughout the life cycle. Uncertainty assessment also provides valuable information for allocation of 
testing efforts. Also, it can be used for certification of software system given its structure and the 
inaccuracy in estimation of its usage. This is an important aspect of our work, because with the 
growing emphasis on reuse developers can not afford to stay away from reliability certification. 
 
3. Methodology for uncertainty analysis 
 

The architecture - based approach for software reliability assessment considers the utilization and 
the reliability of components, thus allowing insight into the dynamic behavior of software executions. 
In order to estimate the system reliability using architecture - based model we need to know the 
software architecture (structure of component interactions), software usage described by the 
operational profile (relative frequencies of component interactions determined by transition 
probabilities), and software failure behavior (component reliabilities or failure rates). In [Goseva01b] 
we have shown that the architecture – based software reliability model presented in [Cheung80] 
provides system reliability estimates close to the actual measured reliability, that is, we have validated 
the model appropriateness.  In this report we propose a methodology for uncertainty analysis (see 
Figure 1) and focus on the assessment of the uncertainty in software reliability due to uncertainty of 
modeling parameters. The basic concepts of our work were presented in [Goseva02a]. Here, we 
describe the proposed methodology in detail. 
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Figure 1. Methodology for uncertainty analysis of software reliability 
 
 

3.1. Software architecture 
 

Software behavior with respect to the manner in which different components interact is defined 
through the software architecture. We use state - based approach to build the architecture - based 
software reliability model [Goseva01a], [Goseva01b]. This approach uses the control flow graph to 
represent software architecture. The states represent active components and the arcs represent the 
transfer of control. Based on the assumption that the transfer of control between components has a 
Markov property, the architecture is modeled with a discrete time Markov chain (DTMC) with a 
transition probability matrix ][ ijpP = , where 

}Pr{ jcomponenttoicomponentfromcontrolthetransfersprogrampij = . The Markov chain has 
a two-phase construction. The structural phase involves the establishment of the static software 
architecture. The static software architecture can be build using different abstraction levels as defined 
by the specification, or obtained using parser-based or lexically based tools. The dynamic statistical 
phase involves the estimation of the relative frequencies of components interactions, that is, transition 
probabilities which are clearly dependent on the operational profile. During the early phases of 
software development, dynamic software behavior can be captured using UML use cases and sequence 
diagrams. During the integration phase profiles or test coverage tools can be used to obtain data 
necessary to describe dynamic behavior.  Next, we briefly describe two different approaches that we 
use to build a DTMC that represents dynamic software architecture. 
 Intended approach is used in early phases of software development. We base our estimates on 
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obtained from specification and design documents. Since, UML is rapidly becoming a standard for 
software development, in intended approach we are looking into the UML annotations such as use 
cases and sequence diagrams [UML]. Use case diagrams provide graphic description of how 
external entities interact with the system. Sequence diagrams depict how group of components 
interact in a use case. Each sequence diagram shows a number of components and the how many 
times the messages are exchanged between them.  

 Informed approach is used during late phases of software development when testing or field data 
become available. Thus, component traces obtained using profilers [gprof] and test coverage tools 
[ATAC] can be used to obtain a set of execution paths and establish the frequency count of the 
transition arcs.  
Dynamic information in software architecture clearly depends on the software usage, that is, the 

operational profile. Operational profiles have been developed successfully for the applications such as 
real-time telecommunication systems where the use of the software is predictable because it is related 
to identifiable events due to human activity [Musa93]. In general, the estimation of a trustworthy 
operational profile is difficult because it requires anticipating the field usage of the software and a 
priori knowledge about the application and system environments. A typical example would be a flight 
control system of a spacecraft in which very critical software components are activated by physical 
events whose frequencies during the field usage are totally unknown. Further, in process control 
applications various software components are activated by complex sequences of events whose 
frequencies can hardly be estimated a priori. In other cases, a single operational profile is not sufficient 
to describe the use of the product by different users. Because the effort required to derive an 
operational profile for each group of users is usually extremely high, the usual solution is to adopt an 
approximate operational profile that represents a rough average of the operational profiles of the 
different users. In addition to above difficulties, problems could arise due to the changes of the 
operational profile during the development and field usage of the software.  Thus, software systems 
evolve because functions are added or modified. As a consequence, the way in which the software is 
used also evolves, and the operational profile changes.  This, of course, will invalidate any existing 
estimates of the operational profile. These reasons can easily lead to erroneous estimates of the 
operational profile which will directly affect the reliability estimate. Therefore, it is important to 
conduct uncertainty analysis due to uncertainty in the operational profile estimation.  
  

3.2. Components failure behavior 
 

The next step in our methodology is to consider components failure behavior, i.e., estimate the 
reliability of each component.  We assume that components fail independently. The reliability of the 
component i is the probability iR  that the component performs its function correctly. Assessing the 
reliability of software components clearly depends on the factors such as whether or not component 
code is available, how well the component has been tested, and whether it is a reused or a new 
component. 

Several techniques for estimating component's reliability have been proposed. Software reliability 
growth models can be applied to each software component exploiting component's failure data 
obtained during testing [Farr96]. However, due to the scarcity of failure data it is not always possible 
to use software reliability growth models. Another possibility is to estimate component's reliability 
from explicit consideration of non-failed executions, possibly together with failures [Miller92], 
[Nelson73]. In this context, testing is not an activity for discovering faults, but an independent 
validation activity. The problem that arises with these models is the large number of executions 
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necessary to establish a reasonable statistical confidence in the reliability estimate. Finally, one can use 
fault injection technique to estimate component's reliability [Goseva01b]. However, fault-based 
techniques are only as powerful as the range of fault classes that they simulate. Regardless of the 
technique, the estimates of component reliabilities may be inaccurate, which further motivates the use 
of uncertainty analysis. 
 

3.3. Combining software architecture with failure behavior  
 
 The presented methodology for uncertainty analysis can be applied to any architecture - based 
software reliability model that has a close form solution for the system reliability. In this report we use 
the model first presented in [Cheung80] which uses composite method to combine software 
architecture with failure behavior. Two absorbing states C and F are added to the DTMC, representing 
the correct output and failure respectively. The transition probability matrix P is modified to P̂  as 
follows. The original transition probability ijp between the components i and j is modified into iji pR , 
which represents the probability that the component i produces the correct result and the control is 
transferred to component j. From the exit state n, a directed edge to state C is created with transition 
probability nR  to represent the correct execution. The failure of a component i is considered by 
creating a directed edge to failure state F with transition probability )1( iR− .  The reliability of the 
program is the probability of reaching the absorbing state C of the DTMC. Let Q  be the matrix 
obtained from P̂  by deleting rows and columns corresponding to the absorbing states C and F. 

),1( nQk represents the probability of reaching state n from 1 through k transitions. From initial state 1 
to final state n, the number of transitions k may vary from 0 to infinity. It can be shown that 

1
0 )( −∞

= −==∑ QIQS k
k , so it follows that the overall system reliability is nRnSR ),1(= .         

 

3.4. Uncertainty analysis 
 

Using the model described in Section 3.3 we obtain the expression for system reliability R as a 
function of transition probabilities ijp and component reliabilities iR . These parameters are required to 
have input values so that the software reliability can be computed from the model. Regardless of the 
accuracy of the mathematical model used to model software reliability, if considerable uncertainty in 
components failure data exists (as it usually does) then a significant uncertainty in calculated system 
reliability exists. Therefore, the traditional approach of computing the point estimate of the system 
reliability by plugging point estimates of component reliabilities into the model is not appropriate. In 
order to answer the question how parameters uncertainties propagate into overall system reliability, 
uncertainty analysis is necessary. To conduct uncertainty analysis, we can treat unknown parameters as 
random variables and quantify the uncertainty of system reliability. In this case, the system reliability 
is also a random variable. 

Different methods can be applied for synthesizing uncertainty in system reliability from 
uncertainties in component reliabilities and transition probabilities (see Figure 2). The choice of the 
method will depend on criteria such as data requirements, reliability measures derived, accuracy of the 
solutions, and scalability with respect to the number of components. In this report we use entropy, 
method of moments, and Monte Carlo simulation for uncertainty analysis of software reliability. 
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Figure 2. Methods for uncertainty analysis in software reliability 
 
 

4. Description of the case studies 
We apply and validate our methodology on case studies from European Space Agency and NASA. 

In this section we briefly describe these case studies. 

4.1. Case study from the European Space Agency (ESA) 
The application from the European Space Agency [Goseva01b] provides language - oriented user 

interface which allows the user to describe the configuration of an array of antennas. Its purpose is to 
prepare a data file in accordance with a predefined format and characteristics from a user, given the 
array antenna configuration described using the Array Definition Language. The program was 
developed in C language and consists of almost 10,000 lines of code. It is divided into three 
subsystems: the Parser subsystem, the Computational subsystem, and the Formatting subsystem. The 
choice of this program as a case study was based on the following: 

 The program is real and of typical size for this kind of application. 
 The programming language is widely used. 
 The program has been extensively used after the last fault removal without failures. This gold 

version is used as an oracle in the experiment. 
 A set of test cases is generated randomly accordingly to the known operational profile determined 

by interviewing the users of the program. 
 Component traces obtained during the testing are used for building the software architecture and 

estimating transition probabilities. 
 Component reliabilities are estimated using fault injection. Faults reinserted in the code during the 

experiment are the real faults discovered during integration testing and operational use of the 
program. 
Figure 3 presents the special case of our methodology for uncertainty analysis used for the 

European Space Agency case study. 
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Figure 3. Special case of the methodology used for the ESA case study 
 

DTMC that represents software architecture is shown in Figure 4. Components 1, 2, and 3 
correspond to the Parser, Computational, and Formatting subsystems respectively. State E represents 
the completion of execution. The choice for the decomposition was made in order to reach a tradeoff 
between number of components, their size, and the ability to collect data needed for use in the model.  
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Software architecture for the ESA case study 
In the experiment, two faulty versions of the program were constructed. Faulty version A consists 
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executed on the same test cases generated randomly on the basis of the operational profile. Component 

traces obtained during testing were used for estimating transition probabilities
i

ij
ij n

n
p = , where ijn is the 

number of times control was transferred from component i to component j, and ∑=
j

iji nn .  

When the outputs of the faulty version and the oracle disagreed it was necessary to determine the 
component that has failed. Identification of the fault responsible for the failure was only aimed at 
determining which component has failed. Faults have not been removed and the number of failures 

includes recurrences due to the same fault. Component reliabilities are estimated as 
i
i

n
i n

fR
i ∞→

−= lim1 , 

where if  is the number of failures and in  is the number of executions of component i in N randomly 
generated test cases accordingly to the operational profile. Estimated values for transition probabilities 

ijp and component reliabilities iR for both faulty versions are given in Table 1. 
 

Version 12p  23p  1R  2R  3R
A 0.5933 0.7704 0.8428 0.8346 1 
B 0.7364 0.6866 1 0.8346 1 

 
Table 1. Transition probabilities and component reliabilities for versions A and B 

DTMC presented in Figure 5 is a composite state based model of this application. The expression for 
system reliability obtained using the model is given by  

3212312212312112 )1()1( RRRppRRppRpR +−+−= . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Architecture-based software reliability model for the ESA case study 
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 As it can be seen from Table 2, the architecture - based software reliability model gives accurate 
estimations compared to the actual reliability for each of the faulty versions which validates the 
appropriateness of this model for software reliability estimation.   
 

 

 

 

 

Table 2. Comparison of the results 
 

We also consider a hypothetical example of software architecture given in Figure 6 which has an 
additional transition from component 2 to component 1. This example is meant to illustrate how the 
components executed within a loop affect software reliability. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Software architecture for the hypothetical example 
 
 
For the example in Figure 6 the system reliability obtained using the model described in Section 3.3 is 
given by 
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4.2. Case study from NASA: Hub Control Software 

 
Our case study from NASA is the Hub Control Software (HCS). This is Computer Software 
Configuration Item (CSCI) resident in the Hub Control Zone Multiplexers/Demultiplexers (HCZ 
MDMs) which are installed in the Node 3 Module of the ISS (International Space Station). For this 
case study we only had available the UML use case diagram and sequence diagrams for each use case. 
Therefore, we are using the intended approach to build software architecture. We build DTMCs using 
UML sequence diagrams that present software components used for given scenario and the how many 
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times the messages are exchanged between these components. The expression used to estimate the 

transition probability from component i to component j is given by 
i

ij
ij n

n
p = , where ijn is the number 

of times messages are transmitted from component i to component j and in is the total number of 
massages from component i to all other components that are present in the sequence diagram.  

Data for the components failure behavior were not available for the HCS case study. Also, we 
didn’t have historical failure data for similar projects. Therefore, for the HCS case study we only apply 
the uncertainty analysis of the operational profile based on entropy. Figure 7 presents the special case 
of our methodology used for the HCS case study. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Special case of the methodology used for HCS case study 
 

 
Figure 8 shows the main use case diagram and all the relationships among the use cases and the 

actors. Each use case is realized by at least one sequence diagram (or scenario).  
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Figure 8. Use case diagram of the HCS case study 

Out of the available sequence diagrams for the use cases in the HCS study we use the Both Pumps 
Retry, Dual, and LT Pump Retry. Figure 9 shows the sequence diagram of the Both Pumps Retry 
scenario. 
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Figure 9. Sequence diagram of the Both Pumps Retry scenario  
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Analyzing the sequence diagram of the Both Pumps Retry scenario given in Figure 9, we 
construct the DTMC that represents the software execution behavior as shown in Figure 10.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. DTMC for the Both Pumps Retry scenario 
Transition probability matrix for the Both Pumps Retry scenario is given by 
                                

       S     1       2      3      4       5        6      E 

 
where S, 1, 2, 3, 4, 5, 6, and E denote the start sate, components PFMC_LT, PFMC_MT, FRITCS, 
RPCM_LT, RPCM_MT, SCITCS, and the end (terminating) state respectively. 
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 DTMC that represents the software execution behavior of the Dual scenario is shown in Figure 
11.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. DTMC of the Dual scenario 
Transition probability matrix for the Dual scenario is given by 
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where S, 1, 2, 3, 4, 5, 6, 7, 8, and E represent the start state, components SCITCS, FRITCS, 
PFMC_LT, PFMC_MT, Schedular, Application Command Queue, Data Access 1, Data Access 2, and 
the end state respectively. 
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DTMC that represents the software execution behavior of the LT Pump Retry scenario is shown in 
Figure 12.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. DTMC of the LT Pump Retry scenario 
 

Transition probability matrix for the LT Pump Retry scenario is given by 
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where S, 1, 2, 3, 4, 5, and E represent the start state, components PFMC_LT, Data Access 1, FRITCS, 
SCITCS, RPCM_LT, and the end state. 
 
5. Uncertainty analysis based on entropy 
 

In this section, we present the uncertainty analysis using entropy, a well-known concept from 
information theory [Ash65]. Source entropy that measures the amount of uncertainty inherent in a 
Markov source is given by [Ash65] 
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where iπ  is the steady state probability of state i and ijp  are the transition probabilities. This single 
value is related to the number of paths that are statistically typical of the Markov chain. Thus, higher 
value implies exponentially greater number of typical paths, i.e., more paths exist because of the 
uncertainty present in the source. The entropy value is maximum when all the transitions that are exit 
arcs from each state are equiprobable. The range of entropy for a Markov chain with n states is 

)log(0 nH ≤≤ .  
 In this report, we use the concept of source entropy to quantify the uncertainty of the 

operational profile and architecture-based software reliability models. In addition, we quantify the 
uncertainty of components using the conditional entropy [Ash65]. Thus, the uncertainty of component 
i (i.e., state i) is given by equation ∑−=

j
ijiji ppH log . In general, uncertainty of component i will be 

higher if it transfers the control to more components (i.e. more states are directly reachable from state 
i) and the transition probabilities are equiprobable. Further, we compute the steady state probabilities 

][ iππ = by solving the system of equations Pππ = , where P is the transition probability matrix of the 
DTMC. Since iπ can be interpreted as the expected execution rate of component i in the long run, it 
represents a measure of component usage which in addition to component uncertainty iH can be used 
to identify critical components. 

 
5.1. Application of the entropy on the ESA case study  

5.1.1. Uncertainty of ESA operational profile  
Using the equation for the source of entropy H we plot in Figure 13 the variation in the uncertainty 

of the operational profile as a function of 12p and 23p . In general, when transition probabilities are 
close to 0 or 1 the number of typical paths will be small and the uncertainty will be low. The maximum 
uncertainty 0.5514 is obtained when both 12p and 23p  are equal to 0.5.  The uncertainty of the two 
operational profiles defined by the empirical values of transition probabilities for versions A and B 
given in Table 1 are 0.4707 and 0.4604, respectively. Thus, operational profile A is more uncertain 
than operational profile B, although the difference is not significant. 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 13. Uncertainty of the operational profile as a function of 12p and 23p  
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5.1.2. Uncertainty of ESA software reliability 

Next, we consider the uncertainty of software reliability. As in the case of the operational profile, 
in order to estimate the source entropy of a DTMC given in Figure 5, we consider multiple software 
executions by adding transitions from both states E and F to the starting state 1. The addition of failure 
state F to DTMC and the modification of transition probability matrix affect the source entropy. In 
Figure 14 we illustrate how the uncertainty H and system reliability R vary as functions of 12p and 

23p for versions A and B.  As indicated by these figures, considering components failure behavior 
increases the uncertainty of both versions compared to the uncertainty due to operational profile (see 
Figure 13). Note that version B, which is more reliable, is less uncertain than version A. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 14. Uncertainty and reliability for versions A and B as functions of 12p and 23p  

 
 

Version A reliability 

 Version A uncertainty Version B uncertainty 

Version A reliability Version B reliability 
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5.1.3. Uncertainty of ESA components  

Expected execution rates iπ and uncertainties iH  for components in the operational profiles A and B 
are shown in Table 3 and Figure 15. Component 1 in operational profile A has the highest uncertainty 
since transition probability 12p is close to 0.5. The uncertainty of component 3 is zero because there is 
only one transition out of state 3, i.e., we are certain that the control will be transferred to component 4. 
Of course, components that have higher expected execution rate and higher uncertainty will require 
more testing effort. 
 

iπ  iH   
Version A Version B Version A Version B 

State 1 0.3278 0.3085 0.9747 0.8321 
State 2 0.1945 0.2271 0.7773 0.8971 
State 3 0.1498 0.1560 0 0 
State E 0.3278 0.3085 0 0 

 
Table 3. Execution rates and uncertainties of components for operational profiles A and B 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15. Execution rates and uncertainties of components for operational profiles A and B 
 

Expected execution rates iπ and uncertainties iH for the components in the software reliability 
model given in Figure 5 are shown in Table 4 and Figure 16. 
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iπ  iH   
Version A Version B Version A Version B 

State 1 0.3544 0.3166 1.4491 0.8321 
State 2 0.1772 0.2332 1.2958 1.3958 
State 3 0.1139 0.1336 0 0 
State E 0.2694 0.2781 0 0 
State F 0.0851 0.0386 0 0 

 
Table 4. Expected execution rates and uncertainties of components for the software reliability model, 

versions A and B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16. Expected execution rates and uncertainties of the components for the software reliability 
model, versions A and B 

 
Comparing the results in Table 3 and Table 4 (i,e, Figure 15 and Figure 16), we see that the 

uncertainty of component 1 in version B remains the same because 11 =R results in zero transition 
probability to failure state. For all other components (1 and 2 in version A and 2 in version B) the 
component uncertainty increases due to 1<iR  which leads to additional transitions to failure state.  In 
summary, components that have higher expected execution rate, higher component uncertainty and 
moderate reliability should be allocated more testing effort. 
 

5.2. Application of the entropy on the NASA’s HCS case study  
In this section we apply entropy as a measure for uncertainty on the HCS case study. DTMC that 

describes the software architecture of Both Pumps Retry scenario given in Figure 10 consists of eight 
components, including the starting and end state of the application. The uncertainty of the operational 
profile defined by the transition probability matrix of this scenario is 0.7505. Note that this value of 
uncertainty is low compared to the maximum uncertainty ( 38log2 = ) due to the fact that the control 
flow graph (DTMC) of this scenario is not highly connected, that is, the transition probability matrix is 
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sparse with many transition probabilities equal to 0. Using the equation for the source of entropy we 
have plotted the variation of the uncertainty of the operational profile as a function of 12p and 47p on 
Figure 17. 

 
Figure 17. Uncertainty for the operational profile for the Both Pumps Retry scenario 

 
Next we focus on the component uncertainty and expected execution rate for the Both Pumps Retry 
scenario (see use Table 5 and Figure 18).  
 
States S PFMC_LT PFMC_MT FRITCS RPCM_LT RPCM_MT SCITCS T 

πi 0.1334 0.1 0.1 0.2999 0.0333 0.0666 0.1334 0.1334 
Hi 1 0 0 2.0579 0 0 0 0 

 
Table 5. Execution rates and uncertainties of components in the Both Pump Retry scenario 

S
PF

M
C

_L
T

PF
M

C
_M

T
FR

IT
C

S
R

PC
M

_L
T

R
PC

M
_M

T

SC
IT

C
S T

Execution Rate
Uncertainty0

0.5

1

1.5

2

2.5

 
Figure 18. Execution rates and uncertainties of components in the Both Pump Retry scenario 
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It is obvious from Table 5 and Figure 18 that the component FRITCS is executed most often and its 
uncertainty is the highest. Clearly, FRITCS is the most critical components in Both Pumps Retry 
scenario and would require significantly more testing effort than other components. 

Next, we consider the Dual scenario with a DTMC given in Figure 11. The uncertainty of this 
scenario estimated using the equation for the source of entropy is 1.093. The entropy is higher than in 
the case of Both Pumps Retry scenario because more components are involved in Dual scenario. The 
variation of the uncertainty of Dual scenario as a function of 34p and 39p  is presented in Figure 19. 
 

 
 

Figure 19. Uncertainty for the operational profile of the Dual scenario 
 
The expected execution rates and uncertainties of components in the Dual scenario are presented in 
Table 6 and Figure 20. In the case of Dual scenario component SCITCS is executed most often and has 
the highest uncertainty. On the other side, FRITCS which is the most critical component in the Both 
Pumps Retry scenario is not critical for the Dual scenario. First, it is executed with the expected rate 
0.037 significantly lower that 0.2999 in the Both Pumps Retry scenario. Also, the uncertainty of 
FRITCS in Dual scenario is 0 (it transfers the control only to the end state).  
 
 

States S Scheduler SCITCS PFMC_LT PFMC_MT Data 
Access 1 

Data  
Access 2 

App. 
Comm. 
Queue 

FRITCS T 

πi 0.037 0.037 0.4445 0.111 0.1111 0.0741 0.0741 0.037 0.037 0.037 
Hi 0 0 2.4591 0 0 0 0 0 0 0 

 
Table 6. Execution rates and uncertainties of components in the Dual scenario 
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Figure 20. Execution rates and uncertainties of components in the Dual scenario 

 
Let us now consider the LT Pump Retry scenario of the HCS case study. The DTMC for the LT 

Pump Retry scenario given in Figure 12 has 7 states (including the starting state S and end state E). 
Consequently, it has less uncertain (0.5599) than Both Pumps Retry scenario. The variation of the 
uncertainty of Dual scenario as a function of 12p and 45p  is presented in Figure 21. 
 

 
Figure 21. Uncertainty for the operational profile of the LT Pump Retry scenario 

 
The expected execution rates and uncertainties of components in the Dual scenario are presented in 
Table 7 and Figure 22. 
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States S PFMC_LT Data 
Access 1 FRITCS SCITCS RPCM_LT T 

πi 0.1429 0.1191 0.0714 0.2857 0.1429 0.0951 0.1429 
Hi 1 0 0 1.4595 0 0 0 

 
Table 7. Execution rates and uncertainties of components in the LT Pump Retry scenario 
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Figure 22. Execution rates and uncertainties of components in the LT Pump Retry scenario 

 
It is obvious from Table 7 and Figure 22 that the FRTCS component is the most critical component for 
LT Pump Retry scenario as well as for the Both Pumps Retry scenario. The expected execution rates 
are close (0.2857 and 0.2999 for the LT Pump Retry and Both Pumps Retry respectively). However, the 
component uncertainty for the LT Pump Retry scenario (1.4595) is lower than for the Both Pumps 
Retry scenario (2.0579). This is due to the fact that FRTCS component passes the control to the smaller 
number of components in the LT Pump Retry than in the Both Pumps Retry scenario. 
 
6. Uncertainty analysis based on method of moments 
 

In this section we use the method of moments for conducting uncertainty analysis. The method of 
moments is an approximate method that allows us to generate the moments of system reliability from 
the moments of component reliabilities. We again use the model first presented in [Cheung80] to 
obtain the relationship between system reliability R and the component reliabilities nRRR ,,, 21 K given 
by the function ),,,( 21 nRRRfR K= . The actual relationship between system reliability and 
components reliabilities depends on the specific software architecture. If we treat each component 
reliability on the right - hand side of this expression as a random variable, then the system reliability is 
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also a random variable. Note that the uncertainty analysis in general and the use of the method of 
moments in particular are not limited to this model. They can be applied to any architecture - based 
model that provides close form solution. 

Let ][ iRE  be the mean value of the ith component reliability and let ][ ik Rµ  denote its kth central 
moment (or moment about the mean). The method of moments allows us to obtain the estimates of the 
expected value ][RE and kth central moments ][Rkµ for system reliability based on (1) knowledge of 
the system structure ),,,( 21 nRRRfR K= and (2) data on the components reliabilities from which 
estimates of ][ iRE and ][ ik Rµ  for ni ,,2,1 K= can be obtained. 

System reliability moments are generated by expanding the system function 
),,,( 21 nRRRfR K= in a multivariable Taylor series expansion about the statistically expected values 

of each of the component reliabilities ][ iRE . We have used Mathematica to derive the system 
reliability expression ),,,( 21 nRRRfR K= and its partial derivates for the Taylor series expansion. 

The method of moments is an approximate, rather than an exact, method, because of the omission 
of higher order terms in the Taylor series expansion. Thus, the first order Taylor series expansion is 
given by 
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Then, the mean and the variance of system reliability are given by 0][ aRE ≈ and 
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i ii RVaraRRVar 1

2
2 ][][][ µ . 

 
The accuracy of the ][RE and ][RVar can be improved by including higher order terms in the 

Taylor series expansion. We have also derived the second order Taylor series expansion and the 
expressions for the mean and the variance of system reliability.  
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Then, the mean and the variance of system reliability for the second order Taylor approximation are 
given by 
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Note that generating the mean and the variance of system reliability from the second order Taylor 

series expansion requires the knowledge of the first four central moments of component reliabilities. 
Even more, we can generate the first four central moments of the system reliability using the first eight 
central moments of component reliabilities. Then, the estimates of the first four moments may be used 
to select an empirical distribution from which the percentiles of the system reliability distribution may 
be obtained. 

 
6.1. Application of the method of moments on the ESA case study  
Next, we illustrate the method of moments on the European Space Agency case study. Table 8 

compares the values obtained for the mean, variance and coefficient of variation ][/][ RERVarCR =  
(a relative measure of the spread of the distribution) of the system reliability for versions A and B 
using first and second order Taylor series expansion. As expected, version B has higher mean 
reliability then version A. In addition, the variance is smaller and the distribution of the system 
reliability is less spread. Further, for this example the second order approximation does not improve 
the accuracy. 
 

  First order 
Taylor series

Second order 
Taylor series 

Mean 0.7601 0.7601 
Variance 0.0068 0.0068 Version A 

RC  0.1085 0.1085 
Mean 0.8782 0.8782 
Variance 0.0035 0.0035 Version B 

RC  0.0671 0.0671 
 

Table 8. Mean and variance of the system reliability for versions A and B 
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In general, higher order Taylor series expansion will increase accuracy, as it can be seen form 
Table 9 which presents the results obtained for the hypothetical example given in Figure 6 (referred 
here as version C). 
 

  First order 
Taylor series

Second order 
Taylor series 

Mean 0.6261 0.6314 
Variance 0.0106 0.0101 Version C 

RC  0.1640 0.1589 
 

Table 9. Mean and variance of the system reliability for the hypothetical example 
 
Although the accuracy may be further increased, the derivation of the third or higher order 

approximations would constitute a formidable task and require higher number of central moments for 
component reliabilities. Even if the expressions for the third (or higher) order approximation are 
derived, it might happen that the sampling error due to limited number of observations available for 
estimation of the central moments of the component reliabilities will exceed the error introduced by the 
omission of higher order terms.   

The method of moments has several advantages. First, it requires only the knowledge of the 
moments of components reliabilities, that is, no distribution function must be specified.  Second, 
generation of random numbers is not required, therefore there is no sampling error. Finally, it could be 
applied to dependent as well as independent parameters, although the expressions for dependent 
variables would be more difficult to derive due to their complexity. 

However, the method is approximate and a finite error is associated with the use of only up to first 
(second) order terms in the Taylor series expansion. Further, the accuracy of this method is not readily 
quantifiable.  Therefore, if precise accuracy calculations for system reliability are required to support 
the uncertainty analysis, the method of moments might not be a good choice.  
 
7. Uncertainty analysis based on Monte Carlo simulation 
 

Monte Carlo simulation is an approximate, but powerful method for estimating reliability of the 
system when the parameters of the model can be represented by well defined probability distributions. 
Direct sampling Monte Carlo method consists of the repeated generation of random variables from 
parameter distributions and their combination according to derived equation for system reliability. 
Essentially, this is equivalent to constructing many experiments or running many tests on identical 
systems. A direct Monte Carlo simulation consists of the following steps: 

1. Derive the expression for system reliability.  

2. Assign probability distributions to transition probabilities and components reliabilities. 
3. Estimate the parameters of these probability distributions from engineering judgment, historical or 

test data. 
4. Sample the probability distributions of the parameters. 
5. Compute the system reliability using the expression determined in Step 1 and the values of the 

parameters sampled in Step 4. 
6. Repeat steps 4&5 until the desired number of system reliability values has been generated. 
7. Calculate the moments, frequency chart, and percentiles for the system reliability; do the 

distribution fitting. 
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In this report we derive the reliability expression (step 1) using the architecture - based software 

reliability model described in Section 3.3. Note that the uncertainty analysis in general and the use of 
the Monte Carlo method in particular are not limited to this model. They can be applied to any 
architecture - based model that provides close form solution. 

In step 2 we assign probability distribution functions to transition probabilities and component 
reliabilities. These distribution functions can be based on theoretical assumption or on observed data. 

We assume that component reliabilities are random variables with Beta distribution with pdf given 
by 
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We further assume that the rows in the transition probability matrix are independent and distributed 
accordingly to Dirichlet distribution. This distribution is commonly used for a set of proportions 
adding up to one and has been used in connection with Markov transition probability matrices 
[Martin67]. Thus, the joint density for the ith row in transition probability matrix has the form 
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For the simulation of Dirichlet distribution we use the transformation approach [Johnson87] based 

on the following property [Johnson69].  The standard Dirichlet distribution is defined as the 
distribution of ),,( 2,1 nYYY K where ∑ == n

j jkk ZZY 1/  and njZ j ,,2,1, K= are independent, standard 

Gamma distributed random variables with shape parameter jα .  The Dirichlet distribution has two 
properties that make it attractive. First, with the selection of different parameters it can take a wide 
variety of shapes. Second, if the prior distribution is a Dirichlet, then the posterior distribution is also 
Dirichlet.  Even in cases where the use of the Dirichlet distribution is not implied by theory, due to its 
variety of shapes it may prove useful as an approximation. However, our method is not restricted to 
Dirichlet distribution. For instance, in some cases it might be assumed that parameters vary by some 
fixed amount (e.g., 05.01.0 ± ) and they are uniformly distributed in the interval.  

The basic characteristics of uncertainty analysis based on Monte Carlo simulation with respect to 
different criteria are the following: 

 High data requirements in form of probability distribution functions of modeling parameters. 

 Many characteristic of system reliability can be derived, including moments, percentiles, and 
distribution functions. 

 The accuracy of the method may be increased simply by increasing the number of simulations. 
Although with the hardware available today it is not critical, it is worth mentioning that the 
computational cost increases with the sample size.  
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 Sampling errors may be involved in case of long tail distribution. 

 Monte Carlo method scales very well, that is, it is not very sensitive to the number of components 
in the system. 

 
7.1. Application of the Monte Carlo method on the ESA case study 

 
Numerical results presented in this section were obtained using two commercial tools. First, we use 

Mathematica to derive the system reliability expressions ),( iji pRfR = in symbolic form. Then, we 
use Crystal Ball 2000 to run the simulations. In all cases, Monte Carlo simulation was carried for 
10,000 trails. 
 
In Figure 23 we consider how the uncertainty of the operational profile A (i.e., transition probabilities) 
affects system reliability. For this purpose we keep the values of component reliabilities fixed to the 
point estimates given in Table 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 23. Uncertainty analysis of operational profile A 
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The mean of the system reliability obtained from the simulations 0.7600 is very close to the point 

estimate 0.7601 given in Table 2. The estimation of the mean reliability converges in approximately 
3000 iterations (see Figure 24).  

 
Figure 24. Convergence of the mean for the operational profile A 

 
 

In addition to the mean reliability, we have estimated several other characteristics of the system 
reliability distribution [Hahn94]: 

 Coefficient of variability which related to the spread of a distribution (0.0276). 

 Skewness which relates to the lean of a distribution (0.2072). 

 Kurtosis which related to the peakedness of a distribution (2.6047). 
Note that these measures are relative which allows us to compare different distributions. 
  

The frequency chart presented in Figure 23 gives the probability (frequency) of occurrence for 
different values of system reliability. In the case of operational profile A the range of the system 
reliability is 0.7048 to 0.8270. The estimated value of the variance 0.0004 is small compared to the 
variance of the transition probabilities. Also, the distribution is slightly skewed to the right 
(i.e. has a right tail).  We have also done a distribution fitting for system reliability using the frequency 
data. In this case Weibull distribution with parameters given in the Figure 23 is the closest fit to the 
frequency data based on the Chi - square fitness test. 

Further, we have estimated the percentiles, i.e., certainty bands. In case of operational profile A 
95% band ranges from 0.7205 to 0.7975, which implies that 95% of the values obtained for the 
reliability fall in this range. Another interesting observation is with respect to the sensitivity of system 
reliability to different parameters. The parameters in the Figure 23 are ordered accordingly to their 
contribution to the variance of system reliability. Thus, the system reliability is the most sensitive to 

121 1 pp E −=  and the variance is positive. 
Next, we illustrate how the variation of transition probabilities and component reliabilities together 

affect the system reliability. The frequency chart, certainty bands, and sensitivity chart for version A 
are given in Figure 25. The range of the reliability [0.3759,0.9818] is significantly larger than the one 
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in Figure 23. The distribution is skewed to the left, that is, has the left tail. In this example, even 
though the variation of component reliabilities is small, they play critical role in the variation of system 
reliability. As it can be seen from the sensitivity chart 93.3% of the reliability variation is due to 
reliabilities 1R and 2R . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 25. Uncertainty analysis of version A 
 

In Figure 26 we present the results for version B obtained by varying transitions probabilities and 
component reliabilities. The reliability range in this case is [0.4571, 0.9952] and the reliability 
distribution is also skewed to the left. As it can be seen from the values given in Table 10 the reliability 
distribution of version B has higher mean and less variance. Further, it is more skewed to the left (that 
is, concentrated to the right), with higher peak. Also, certainty bands for version B are narrower than 
for version A. The system reliability is still more sensitive to the variation of the component 
reliabilities, although with smaller contribution to the variance (86.2%). 

As the software development progresses, we expect that the software reliability will increase (for 
example because of fixing faults). Also, more accurate data will become available which will decrease 
the uncertainty of the parameters estimations. As a result, later in the life cycle we should obtain 
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software reliability distributions with higher mean (close to 1), less variance, concentrated to the right 
(i.e., skewed to the left), and with higher peaks. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 26. Uncertainty analysis of version B 

 
 

Version Mean 
Coefficient of

variability 
Skewness Kurtosis 

A 0.7594 0.1126 -0.4781 3.1644 

B 0.8798 0.0722 -0.9313 4.0617 
 

Table 10. Characteristics of reliability distribution for versions A and B 
 

Our next numerical example illustrates the uncertainty analysis for the hypothetical example 
presented in Figure 6. Table 11 compares the characteristics of the system reliability distribution 
(mean, coefficient of variation, skewness, and kurtosis) for five different values of transition 
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probability 21p  associated with the arc forming a loop in the model. In view of Table 11 the following 
observations are made. The mean system reliability decreases for higher values of transition 
probability 21p and is very close to the point estimate. In addition, we see that for higher values of 

21p the coefficient of variation is increasing, distribution skewness is moving to the right, and the peak 
is decreasing. Due to the space limitations, we show the frequency charts, certainty bands, and 
sensitivity charts only for two values of 21p at the end of the spectrum ( 021 =p and 95.021 =p ). 
 

21p  Mean Coefficient of
variability Skewness Kurtosis 

0 0.7318  0.1225 -0.4458 3.0745 
0.25 0.6865  0.1482 -0.3673 3.0230 
0.5 0.6246  0.1886 -0.2524 2.7510 
0.75 0.5363  0.2736 -0.1850 2.6411 
0.95 0.4109  0.4112 0.1334 2.4294 

 
Table 11. Characteristics of reliability distribution for the hypothetical example 

 
 

It is obvious from Figure 27 that the characteristics of the system reliability distribution are very 
sensitive to the values of modeling parameters. We already knew from the point estimates 
[Goseva01b] that the system reliability for 95.021 =p  is significantly lower that for 021 =p . In 
addition, from uncertainty analysis we observe that the reliability distribution for 95.021 =p  is widely 
spread and has wider certainty bands compared to 021 =p .  Also, the parameters contribution to the 
variance of system reliability changes significantly. Thus, in the case of 021 =p  reliabilities 1R  and 

2R  contribute 96.2% to the variance of system reliability, while in the case of 95.021 =p they 
contribute only 29.8%. Even more, when 95.021 =p the highest effect on the system reliability is 
coming from transition probability 121 1 pp E −= which contributes 53.7% to the variance of system 
reliability. These results clearly illustrate the usefulness of uncertainty analysis and motivate its 
systematic use for software reliability prediction. 
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Table 27.  Uncertainty analysis for the hypothetical example 
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8. Conclusion  
  

In this report we have presented a methodology for uncertainty analysis of software reliability that 
can be applied throughout the software life cycle. Within this methodology, we have used the entropy, 
method of moments, and Monte Carlo simulation to analyze how the uncertainty of the parameters 
(transition probabilities and component reliabilities) propagates into the estimation of system 
reliability. We have applied the proposed methodology and different methods for uncertainty analysis 
on the case studies from the European Space Agency and NASA. 

Obviously, the uncertainty analysis provides richer measures of software reliability than the 
traditional point estimate. These measures can be used for guiding allocation of testing efforts, making 
quantitative claims about the quality of the software subjected to different operational usages, and for 
reliability certification of component - based software systems. We believe that the uncertainty 
analysis of software reliability is not only important but also necessary, especially is we want to make 
predictions early in the life cycle and keep track of software evolution. 

The main focus of our future work is to explore other methods for uncertainty analysis and 
compare them accordingly to different criteria. This comparison will help us to develop sound 
guidelines for choosing the most appropriate method depending on data requirements, derived 
reliability measures, accuracy of the solution, and scalability with respect to the number of 
components. 
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